FEATURE

The Big Idea: Robots on the Road

by Eric Jaffe ’06JRN Published Fall 2016
  • Comments (0)
  • Email
  • ShareThis
  • Print
  • Download
  • Text Size A A A

Photograph by Lindsay France, Cornell University Photography

Hod Lipson, a professor of mechanical engineering and the director of the Creative Machines Lab at Columbia, is a roboticist who researches artificial intelligence and digital manufacturing. In a new book, Driverless: Intelligent Cars and the Road Ahead (MIT Press), Lipson and his coauthor Melba Kurman assert that recent advances in software and robotics will accelerate the development of autonomous vehicles. We asked Lipson to explain the technology and where it will take us next.


Columbia Magazine: People have been talking about driverless cars for decades. Why is this a critical moment?

Hod Lipson: Even back in the 1930s, the automotive companies — General Motors in particular — thought driverless cars were the future. They talked about building smart highways, which are roads that can communicate with vehicles. But the technology was in the infrastructure, which made it impossible to implement. It was just too expensive per mile.

The more recent approach is focused on autonomous robotics. It puts the smarts and technology in the car. An intelligent machine has to deal with the same infrastructure and driving challenges as humans — lane markings, traffic lights, poor weather. It needs to see as humans see.

In the past few years there’s been an explosion in artificial intelligence (AI), and in particular “deep learning.” For driverless cars, deep learning trains the vehicle to drive by feeding it huge amounts of visual data gathered by camera during trips. That’s provided that last piece of the puzzle, which is artificial perception, or basically the ability for the car to see. There’s been this magical pivot. Even though people have been hyping driverless cars for decades, this is different. This time it’s real.


Why is deep learning so pivotal?
The challenge in making a fully autonomous driverless car is that we have to think about three levels of control.

The GM exhibit at the 1939 World’s Fair, Futurama, featured an automated highway system. / Courtsey of GM

On one level, the car has to stay in a straight line and take a turn at exactly the right angle. That’s hard, but it’s been solved by mechanical engineers. On another level, it has to get from New York to DC. That’s also been solved. We use navigation systems on our phones all the time.

What hasn’t been solved, and what has always been a challenge, is what we call “midlevel” controls. It’s not just about going in a straight line, and it’s not about calculating the optimal route. It’s about going around obstacles, stopping at a stoplight, negotiating an intersection, merging into traffic, hitting the brakes because a child is running after a ball, not hitting the brakes because there’s a shadow on the street. Everything else was solved decades ago. This was the part nobody knew how to do.


How has your own research contributed to deep learning?
Our work focuses mostly on the question of how an AI network learns and how we can transfer learning from one network to another.

That’s one of the great advantages of driverless cars. No human driver can have more than one lifetime of driving experience. A car that is part of an AI network can, within a year, have a thousand lifetimes of experience, because it can get information from all the scenes and situations that every other car has experienced. It’s another reason why these cars will drive better than any human has ever driven. They will have experienced every possible situation.


So when will we start to see these autonomous vehicles on our roads?
It’s impossible to pinpoint a year, but we can pinpoint a range. About ten years from now it will begin, and forty years from now it will end, meaning that by 2065 all cars will be autonomous. That’s kind of the range.

It also won’t be uniform, in the sense that it will start in certain places but not others. New York might determine that all cars in Manhattan should be autonomous. The technology could be adopted in vacation resorts or in some brave city like Detroit that is willing to pioneer the technology. It could start in trucks but not private cars. That’s why you can’t pinpoint beyond a range. We know it will start in spots and gradually spread.


Tech companies and car companies are taking very different approaches to this driverless world. You describe the divide as “software versus automotive.”
Tech companies are looking at this as a software or AI play. The platform is a commodity, like a cell-phone body. You can get the car body from anywhere. The motors, the engine — they’re off-the-shelf. But the real smarts is in the software. This is how the software companies are approaching the driverless car. They see it as software on wheels.

The automotive companies, on the other hand, think of it as a car with extra software. The technical term is “driver assist.” Cruise control was a very primitive driver assist; then we developed automatic brake systems and automatic lane keeping. Car companies see this as an evolution of driver assist, where the driver remains behind the wheel, ready to take over in an emergency. Only in the final stage of the technology’s evolution will the car become fully autonomous.

The software camp imagines having no human driver right from the get-go. They’re coming at the problem with a completely different attitude.


You argue that the driver-assist approach is not just worse but actually dangerous. Why is that?
This idea that an intelligent machine should hand off to a human driver in an emergency is very problematic. There are examples of recent plane crashes where the machine handed the controls to the pilots, but the pilots weren’t ready. There’s another case where pilots tried to land a plane themselves, but they were out of practice and they crashed.

The recent fatal Tesla crash demonstrates the risk of the driver-assist approach. A system that is “almost fully autonomous” is dangerously deceptive. And the more you’re automated, the more severe the problem is. If you drive for an hour, it’s hard enough to remain focused. If you’re not driving, how can you stay focused enough to take over? It’s dangerous and unreliable.

  • Email
  • ShareThis
  • Print
  • Recommend (20)
Log in with your UNI to post a comment

The best stories wherever you go on the Columbia Magazine App

Maybe next time